
Computer Graphics

7 - Mesh 2, Lighting & Shading 1

Yoonsang Lee

Spring 2022

Midterm Exam Announcement

• Date & time: Apr 27, 09:30 - 10:30 am

• Place: IT.BT, 508

• Scope: Lecture 2 ~ 7

• You cannot leave the room until the end of the exam even if
you finish the exam earlier.

• Please bring your student ID card to the exam.

• If you are unable to take the offline exam (stay abroad, corona
confirmed, etc.), please contact the TA in advance.

– Chaejun Sohn (손채준 조교), thscowns@gmail.com

– You must inform the TA at least two days before the exam.

Topics Covered

• Mesh

– Representations for triangle meshes - Indexed triangle set

– OBJ file format

• Reflection of Light

• Phong Illumination Model

• Shading

– Face / Vertex Normal

– Flat / Goraud / Phong Shading

4 © 2008 Steve Marschner • Cornell CS4620 Fall 2006 • Lecture 11

Recall: Separate triangles

p1

p0

p3

p2

counter-clockwise order

5 © 2008 Steve Marschner • Cornell CS4620 Fall 2006 • Lecture 11

Indexed triangle set

• Store each vertex once

• Each triangle points to its three vertices

6 © 2008 Steve Marschner • Cornell CS4620 Fall 2006 • Lecture 11

Indexed triangle set

vertex array

index array

counter-clockwise order

Indexed Triangle Set

• Memory efficient: each vertex position is stored

only once.

• Represents topology and geometry separately.

• Finding neighbor triangles is at least well

defined.

• Neighbor triangles share same vertex indices.

Drawing Indexed Triangles using Vertex &

Index Array

• 1. Create a vertex array & index array for your mesh

– The vertex array should not have duplicate vertex data

• 2. Specify “pointer” to this vertex array

– Same with the separate triangles case

• 3. Render the mesh using the specified “pointer” & the

pointer to the index array (which contains vertex

indices to be rendered)

– Using glDrawElements()

glDrawElements()

• glDrawElements(mode , count , type , indices)

• : render primitives from vertex & index array data

– mode: The primitive type to render. GL_POINTS,

GL_TRIANGLES, ...

– count: The number of vertex indices to be rendered

– type: The type of the values in indices.

GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT, or

GL_UNSIGNED_INT

– indices: The pointer to the index array

[Practice] Drawing Indexed Triangles using

Vertex & Index Array
def createVertexAndIndexArrayIndexed():

varr = np.array([

(-1 , 1 , 1), # v0

(1 , 1 , 1), # v1

(1 , -1 , 1), # v2

(-1 , -1 , 1), # v3

(-1 , 1 , -1), # v4

(1 , 1 , -1), # v5

(1 , -1 , -1), # v6

(-1 , -1 , -1), # v7

], 'float32')

iarr = np.array([

(0,2,1),

(0,3,2),

(4,5,6),

(4,6,7),

(0,1,5),

(0,5,4),

(3,6,2),

(3,7,6),

(1,2,6),

(1,6,5),

(0,7,3),

(0,4,7),

])

return varr, iarr

vertex

index
position

0 (-1 , 1 , 1)

1 (1 , 1 , 1)

2 (1 , -1 , 1)

3 (-1 , -1 , 1)

4 (-1 , 1 , -1)

5 (1 , 1 , -1)

6 (1 , -1 , -1)

7 (-1 , -1 , -1)

def drawCube_glDrawElements():

global gVertexArrayIndexed, gIndexArray

varr = gVertexArrayIndexed

iarr = gIndexArray

glEnableClientState(GL_VERTEX_ARRAY)

glVertexPointer(3, GL_FLOAT, 3*varr.itemsize, varr)

glDrawElements(GL_TRIANGLES, iarr.size, GL_UNSIGNED_INT, iarr)

def render():

...

drawFrame()

glColor3ub(255, 255, 255)

drawCube_glDrawElements()

...

gVertexArrayIndexed = None

gIndexArray = None

def main():

...

global gVertexArrayIndexed, gIndexArray

...

gVertexArrayIndexed, gIndexArray = createVertexAndIndexArrayIndexed()

while not glfw.window_should_close(window):

...

Starts from the "[Practice] Drawing
Separate Triangles using Vertex Array"
code in the prev. lecture,

Quiz #1

• Go to https://www.slido.com/

• Join #cg-ys

• Click “Polls”

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the

above format to be checked for “attendance”.

https://www.slido.com/

Do we need to hard-code all vertex positions

and indices?

• Of course not!

• An object file or model file storing polygon mesh data is usually
created using 3D modeling tools.

• Applications (such as games) usually load vertex and index data
from an object file and draw the object using the loaded data.

Blender Maya

3D Model File Formats

• DXF – AutoCAD
– Supports 2-D and 3-D; binary

• 3DS – 3DS MAX
– Flexible; binary

• VRML – Virtual reality modeling language
– ASCII – Human readable (and writeable)

• OBJ – Wavefront OBJ format
– ASCII – Human readable (and writeable)
– Extremely simple
– Widely supported

• Let's take a closer look at OBJ format!

OBJ File Format

this is a comment

List of vertex positions, in (x, y, z) form.

v 0.123 0.234 0.345

v 0.2 0.5 0.3

v ...

...

List of vertex normals, in (x,y,z) form; normals

might not be unit vectors.

vn 0.707 0.000 0.707

vn ...

...

List of vertex texture coordinates, in (u, v) form.

vt 0.500 1

vt ...

...

OBJ File Format

List of faces (all argument indices are 1-based indices!)

with vertex positions only - vertex_position_index

f 1 2 3

f 2 3 4

...

vertex_position_index/texture_coordinates_index/vertex_normal_

index

f 6/4/1 3/5/3 7/6/5

vertex_position_index//vertex_normal_index

f 7//1 8//2 9//3

...

vertex_position_index/texture_coordinates_index

f 3/1 4/2 5/3

...

OBJ File Format

• Other supported featues:

– for parameter space vertices for free from geometry

• vp 0.310000 3.210000 2.100000

– for polyline

• l 5 8 1 2 4 9

– for reference meterials

• mtllib [external .mtl file name]

• usemtl [material name]

– ...

• You don't need to use these features in this class.

An OBJ Example

A simple cube

v 1.000000 -1.000000 -1.000000

v 1.000000 -1.000000 1.000000

v -1.000000 -1.000000 1.000000

v -1.000000 -1.000000 -1.000000

v 1.000000 1.000000 -1.000000

v 1.000000 1.000000 1.000000

v -1.000000 1.000000 1.000000

v -1.000000 1.000000 -1.000000

f 1 2 3 4

f 5 8 7 6

f 1 5 6 2

f 2 6 7 3

f 3 7 8 4

f 5 1 4 8

[Practice] Manipulate an OBJ file with

Blender

• Blender

– https://www.blender.org/

– Open source

– Full 3D modeling/rendering/animation tool

• Install & launch Blender

• Reference for basic mouse actions in Blender

– https://en.wikibooks.org/wiki/Blender_3D:_Noob_to_Pro/3D

_View_Windows#Changing_Your_Viewpoint,_Part_One

https://www.blender.org/
https://en.wikibooks.org/wiki/Blender_3D:_Noob_to_Pro/3D_View_Windows#Changing_Your_Viewpoint,_Part_One

[Practice] Manipulate an OBJ file with

Blender

• Save the obj example in the prev. page as cube.obj (using a text editor)

• Click the "start-up" cube object in the Blender and press Del key to
delete it.

• Import cube.obj into Blender (File-Import)

– Press ‘z’ to render in wireframe mode

• Edit cube.obj somehow (using a text editor)

• Delete the loaded cube and re-import cube.obj into Blender again

• Press ‘tab’ to switch to Edit mode

[Practice] Manipulate an OBJ file with

Blender

• Click to select a vertex and click "move" icon from the left icons (or
press 'G')

• Move the selected vertex by dragging red/blue/green arrows

• Export this mesh to cube.obj (File – Export)

• Open cube.obj using a text editor and check what is changed

• Reference for Edit mode in Blender

– https://en.wikibooks.org/wiki/Blender_3D:_Noob_to_Pro/Mesh_Edit_Mode

• Reference for Object mode in Blender

– https://en.wikibooks.org/wiki/Blender_3D:_Noob_to_Pro/Object_Mode

https://en.wikibooks.org/wiki/Blender_3D:_Noob_to_Pro/Mesh_Edit_Mode
https://en.wikibooks.org/wiki/Blender_3D:_Noob_to_Pro/Object_Mode

OBJ Sources

• https://free3d.com/

• https://www.cgtrader.com/free-3d-models

• You can download any .obj model files from these

sites and open them in Blender.

• OBJ file format is very popular:

– Most modeling programs will export OBJ files

– Most rendering packages will read in OBJ files

https://free3d.com/
https://www.cgtrader.com/free-3d-models

Reflection of Light

Reflection of Light

• Light can be absorbed(흡수), emitted(발산), scattered(
산란), reflected(반사), or refracted(굴절) by objects.

• Scattering and reflection are the main factors in the
visual characteristics of a object surface.

– such as surface color, highlight on surface

• Types of reflection:

– Diffuse reflection

– Specular reflection
• Ideal specular reflection

• Non-ideal specular reflection (a.k.a. Glossy reflection)

* In computer graphics, both scattering and reflection are often referred to as "reflection"

Diffuse Reflection

• : Scattering specific light spectrum in all
direction

• → Determines surface color

• View-independent

strongly scatters

magenta’s wavelengths

scatter all wavelengths with

roughly equal strength absorb all wavelengths

(scatters little)

White light

Mainly scatter green

light’s wavelength

Absorb other

wavelengths

• The reflected energy from a small surface area is

proportional to the cosine of the angle between

incident light direction and the surface normal

Diffuse Reflection - Lambert’s Cosine Law

normal to the reflection surface at the

point of the incidence

intensity of incident ray

intensity of reflected ray

normalized light direction vector

Diffuse Reflection - Lambert’s Cosine Law

Ideal Specular Reflection

• : Mirror-like reflection of light from
smooth, polished surface

• → Generate mirrored images

• View-dependent

• , , lie in the same plane

•

• (and are on the opposite sides of)

Ideal Specular Reflection - Laws of Reflection

normal to the reflection surface at
the point of the incidence

normalized indicent ray direction
vector

normalized reflected ray direction
vector

Non-Ideal Specular Reflection

(a.k.a. Glossy Reflection)

• : Reflection on shiny & glossy surface, but not
as smooth as a mirror

• Reflected rays are “spread out” due to surface
roughness

• → Generate bright highlights

• View-dependent

• Many materials’ surface have both diffuse

reflection and (non-ideal) specular reflection.

Reflection of General Materials

Diffuse Reflections Specular Reflections Total Scattering Distribution

+ =

Quiz #2

• Go to https://www.slido.com/

• Join #cg-ys

• Click “Polls”

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the

above format to be checked for “attendance”.

https://www.slido.com/

Phong Illumination Model

Lighting (or Illumination)

• In computer graphics, lighting (or illumination)

refers to the process of computing the effects of

lights.

• → Computing surface color and highlights of

objects.

Phong Illumination Model

• One of the most commonly used “classical”

illumination models in computer graphics

– Empirical model, not physically based

Bùi Tường Phong
(1942 – 1975)

• Three components:

• Ambient

– Non-specific constant global lighting

– Crudest approximation for indirect lighting

• Diffuse

– Color of object under normal conditions using Lambert’s model

• Specular

– Highlights on shiny objects

– Approximation for glossy reflection using cosn(α)

Phong Illumination Model

Ambient Light

◼ Ca =intensity of ambient light

◼ ka=ambient reflection coefficient

◼ Actually 3 equations for 3 Cas! (Ca
r
, Ca

g
, Ca

b

for Red, Green, Blue)

aaCkI =

• Intensity I is calculated for any point on the surface of the object.

• for a polygon vertex

• or for any interior point in a polygon (corresponds to a pixel

in the film space).

Total Illumination

aaCkI =

Diffuse Light

◼ Cd = intensity of diffuse light (actually 3 equations

for Cd
r
, Cd

g
, Cd

b)

◼ kd = diffuse reflection coefficient

◼ θ = angle between normal and direction to light

)()cos(NLkCkCI dddd == 

L
N



Surface

NL=)cos(

Lambert’s Cosine Law

* Intensity I is calculated

for any point on the

surface of the object.

Total Illumination

aaCkI =

Total Illumination

)(NLCkCkI ddaa +=

Specular Light

◼ Cs = intensity of specular light (actually 3 eq: Cs
r
, Cs

g
, Cs

b)

◼ ks =specular reflection coefficient

◼ =angle between reflected vector (R) and eye (E)

◼ n =shininess coefficient

n

ss

n

ss ERkCkCI)()(cos == 



L
N



Surface

ER=)cos(



R

E

approximation for
glossy reflection

* Intensity I is calculated

for any point on the

surface of the object.

Total Illumination

)(NLCkCkI ddaa +=

Total Illumination

n

ssddaa ERCkNLCkCkI)()(++=

5=n

Total Illumination

50=n

n

ssddaa ERCkNLCkCkI)()(++=

Total Illumination

500=n

Specular falloff of (cos δ) n

n

ssddaa ERCkNLCkCkI)()(++=

• First set the value of the first drop down box to “Phong Shading”

• Try to change

– reflection coefficient and color of ambient, diffuse, and specular

– specular shininess

– you can also change object type, light position and background color

[Practice] Phong Illumination Demo

http://www.cs.toronto.edu/~jacobson/phong-demo/

http://www.cs.toronto.edu/~jacobson/phong-demo/

Quiz #3

• Go to https://www.slido.com/

• Join #cg-ys

• Click “Polls”

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the

above format to be checked for “attendance”.

https://www.slido.com/

Shading

Shading - General Meaning

• Variation in observed color across an object

– Strongly affected by lighting

Shading - Meaning in Computer Graphics

• The process of determining each pixel color in a

polygon based on a illumination model

Surface Normal

• A vector that is perpendicular to the
surface at a given point

– A unit normal vector (of length 1) is
generally used

• Plays a key role in shading &
illumination process

• Diffuse reflection

– Lambert’s Cosine Law

• Specular reflection

– Laws of Reflection

Face Normal

• How to get the surface normal of a polygonal face?

• The normal of a triangle <p1, p2, p3> is computed as v1×v2

– v1 is the vector connecting p1 and p2, v2 connects p1 and p3

• That’s why we need counterclockwise vertex ordering

– The direction of a face normal determines “outside” of the face

The order does matter!

Flat Shading

• Use a single face normal for each polygon

• Calculate color (by illumination) once per polygon

– Typically use center of polygon

• Fast, but not very desirable for curved shapes

– Even if we increase the number of polygons, it’s still “faceted“

Smooth Shading

• Shading methods for curved shapes

– Smooth color transition between two adjacent polygons

• Two methods:

– Gouraud shading

– Phong shading

• Use a vertex normal for each vertex

– For smooth shading, a vertex normal is commonly set to
the average of normals of all faces sharing the vertex.

Gouraud Shading

• Use a single vertex normal for each vertex

• Calculate color (by illumination) at each

vertex

• Interpolate vertex colors across polygon

– Barycentric interpolation

Henri Gouraud

(1944~)

See more for barycentric interpolation:

https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-

triangle/barycentric-coordinates

https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/barycentric-coordinates

Gouraud Shading

Gouraud Shading

• Problem: poor specular highlight

– Specular highlights may be distorted or averaged away

altogether

Higher polygon count

reduces this artifact

Phong Shading Bùi Tường Phong

(1942 – 1975)

• Use a single vertex normal for each vertex

• Interpolate vertex normals across polygon

• Calculate color (by illumination) at each

pixel in polygon using the interpolated

normal

Phong Shading

Gouraud shading Phong shading

Phong Shading

• Captures highlights much better

– The interpolated normal at each interior pixel is more

accurate representation of true surface normal at each

point

– Higher quality, but needs more computation

• Not to be confused with Phong’s illumination

model (developed by the same person)

[Practice] Online Shading Demos

• Flat & Gouraud shading

– http://math.hws.edu/graphicsbook/demos/c4/smooth-vs-

flat.html

• Gouraud & Phong shading

– http://www.cs.toronto.edu/~jacobson/phong-demo/

http://math.hws.edu/graphicsbook/demos/c4/smooth-vs-flat.html
http://www.cs.toronto.edu/~jacobson/phong-demo/

Next Time

• Lab for this lecture (next Monday):

– Lab assignment 7

• Next lecture:

– 8 - Lighting & Shading 2, Hierarchical Modeling

• Acknowledgement: Some materials come from the lecture slides of

– Prof. Andy van Dam, Brown Univ., http://cs.brown.edu/courses/csci1230/lectures.shtml

– Prof. Jinxiang Chai, Texas A&M Univ., http://faculty.cs.tamu.edu/jchai/csce441_2016spring/lectures.html

– Prof. Steve Marschner, Cornell Univ., http://www.cs.cornell.edu/courses/cs4620/2014fa/index.shtml

– Prof. JungHyun Han, Korea Univ., http://media.korea.ac.kr/book/

http://cs.brown.edu/courses/csci1230/lectures.shtml
http://faculty.cs.tamu.edu/jchai/csce441_2016spring/lectures.html
http://www.cs.cornell.edu/courses/cs4620/2014fa/index.shtml
http://media.korea.ac.kr/book/

